Skip to main content
Log in

Modification of carbon paste with congo red supported on multi-walled carbon nanotube for voltammetric determination of uric acid in the presence of ascorbic acid

  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A chemically modified carbon-paste electrode (CPE) is prepared by incorporating congo red (CR) immobilized on multi-walled carbon nanotube (MWCNT). The results show that CR is effectively immobilized on the surface of MWCNT under the ultrasonic agitation in aqueous solution and further incorporating the nafion. The prepared electrode, due to the electrostatic repulsions between the CR and ascorbate anion, is capable to mask the response of the ascorbic acid (AA) completely and provide an effective method for the detection of minor amounts of uric acid (UA) in the presence of high concentrations of AA. On the other hand, an increase in the microscopic area of the electrode by addition of MWCNT together with the electrocatalytic activity caused to a significant enhancement in the voltammetric response to UA. Optimization of the amounts of composite modifier in the matrix of CPE is performed by cyclic and differential pulse voltammetric measurements. The modified electrode shows a linear response to UA in the range of 1.0 × 10−7–1.0 × 10−4 M with a detection limit of 1.0 × 10−8 M. The electrode exhibits excellent accuracies for the determination of UA in the presence of high concentrations of AA (a recovery of 97.6%). The response of the electrode toward sulfhydryl compounds such as cysteine, penicillamine, and glutathione is not considerable. This reveals a good selectivity for the voltammetric response toward UA. The effective electrocatalytic property, ability for masking the voltammetric responses of the other biologically reducing agents, ease of preparation, and surface regeneration by simple polishing together with high reproducibility and stability of the responses make the modified electrode suitable for the selective and sensitive voltammetric detection of sub-micromolar amounts of UA in clinical and pharmaceutical preparations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Iijima S (1991) Nature 354:56

    Article  CAS  Google Scholar 

  2. Ajayan PM (1999) Chem Rev 9:1787

    Article  Google Scholar 

  3. Sinnott SB (2002) J Nanosci Nanotech 2:113

    Article  CAS  Google Scholar 

  4. Wong SS, Woolley AT, Joselevich E, Cheung CL, Lieber CM (1998) J Am Chem Soc 120:8557

    Article  CAS  Google Scholar 

  5. Wong SS, Harper JD, Lansbury PT, Lieber CM (1998) J Am Chem Soc 120:603

    Article  CAS  Google Scholar 

  6. Che GL, Lakshmi BB, Fisher ER, Martin CR (1998) Nature 393:346

    Article  CAS  Google Scholar 

  7. Shim M, Javey A, Kam NWS, Dai H (2001) J Am Chem Soc 123:11512

    Article  CAS  Google Scholar 

  8. Yu J, Shapter JG, Johnston MR, Quinton JS, Gooding JJ (2007) Electrochim Acta 52:6206

    Article  CAS  Google Scholar 

  9. Wang J, Li M, Shi Z, Li N, Gu Z (2002) Anal Chem 74:1993

    Article  CAS  Google Scholar 

  10. Shahrokhian S, Zare-Mehrjardi HR (2007) Sens Actuators B 121:530

    Article  Google Scholar 

  11. Shahrokhian S, Zare-Mehrjardi HR (2007) Electrochim Acta 52:6310

    Article  CAS  Google Scholar 

  12. Wang Z, Liu J, Liang Q, Wang Y, Luo G (2002) Analyst 127:653

    Article  CAS  Google Scholar 

  13. Chen RS, Huang WH, Tong H, Wang ZL, Cheng JK (2003) Anal Chem 75:6341

    Article  CAS  Google Scholar 

  14. Musameh M, Wang J, Merkoci A, Lin Y (2002) Electrochem Commun 4:743

    Article  CAS  Google Scholar 

  15. Wang J, Musameh M (2003) Anal Chem 75:2075

    Article  CAS  Google Scholar 

  16. Davis JJ, Coles RJ, Hill HAO (1997) J Electroanal Chem 440:279

    CAS  Google Scholar 

  17. Yu X, Chattopadhyay D, Galeska I, Papadimitrakopoulos F, Rusling JF (2003) Electrochem Commun 5:408

    Article  CAS  Google Scholar 

  18. Zhao Y, Zhang W, Chen H, Luo Q, Li SFY (2002) Sens Actuators B 87:168

    Article  Google Scholar 

  19. Musameh M, Wang J, Merkoci A, Lin Y (2002) Electrochem Commun 4:743

    Article  CAS  Google Scholar 

  20. Gooding JJ (2005) Electrochim Acta 50:3049

    Article  CAS  Google Scholar 

  21. Wildgoose GG, Banks CE, Leventis HC, Compton RG (2006) Microchim Acta 152:187

    Article  CAS  Google Scholar 

  22. Kachoosangi RT, Wildgoose GG, Compton RG (2008) Anal Chim Acta 618:54

    Article  CAS  Google Scholar 

  23. Rodriguez MC, Sandoral J, Galicia L, Gutierrez S, Rivas GA (2008) Sens Actuators B 134:559

    Article  Google Scholar 

  24. Wang J, Xu J, Chen H (2002) Electrochem Commun 4:506

    CAS  Google Scholar 

  25. Wang J, Hocevar SB, Ogorevc B (2004) Electrochem Commun 6:176

    Article  CAS  Google Scholar 

  26. Shi Z, Lian Y, Zhou X, Gu Z, Zhang Y, Iijima S (1999) Solid State Commun 112:35

    Article  CAS  Google Scholar 

  27. Zhao Q, Gu Z, Zhuang Q (2004) Electrochem Commun 6:83

    Article  CAS  Google Scholar 

  28. Wang J, Musameh M, Lin YH (2003) J Am Chem Soc 125:2408

    Article  CAS  Google Scholar 

  29. Shen K, Curran S, Xu HF, Rogelj S, Jiang YB, Dewald J, Pietrass T (2005) J Phys Chem B 109:4455

    Article  CAS  Google Scholar 

  30. Lawrence SN, Wang J (2006) Electrochem Commun 8:71

    Article  CAS  Google Scholar 

  31. Wang J (2005) Electroanalysis 17:7

    Article  CAS  Google Scholar 

  32. Wang Z, Wang Y, Luo G (2002) Analyst 127:1353

    Article  CAS  Google Scholar 

  33. Hu C, Chen X, Hu S (2006) J Electroanal Chem 586:77

    Article  CAS  Google Scholar 

  34. Hu C, Yang C, Hu S (2007) Electrochem Commun 9:128

    Article  CAS  Google Scholar 

  35. Hu C, Chen Z, Shen A, Shen X, Li J, Hu S (2006) Carbon 44:428

    Article  CAS  Google Scholar 

  36. Dryhurst G (1977) Electrochemistry of biological molecules. Academic, New York

    Google Scholar 

  37. Zen JM, Jou JJ, Ilangovan G (1998) Analyst 123:1345

    Article  CAS  Google Scholar 

  38. Adams RN (1976) Anal Chem 48:1126

    Article  Google Scholar 

  39. Shahrokhian S, Amiri M (2007) Microchim Acta 157:149

    Article  CAS  Google Scholar 

  40. Shahrokhian S, Fotouhi L (2007) Sens Actuators B 123:942

    Article  Google Scholar 

  41. Wang CH, Li CY, Ting L, Xu XL, Wang CF (2006) Microchim Acta 152:233

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of this work by the Research Council and the Center of Excellence for Nanostructures of the Sharif University of Technology, Tehran, Iran. They are grateful to Professor Mehdi Jalali-Heravi for his valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Shahrokhian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shahrokhian, S., Zare-Mehrjardi, H.R. & Khajehsharifi, H. Modification of carbon paste with congo red supported on multi-walled carbon nanotube for voltammetric determination of uric acid in the presence of ascorbic acid. J Solid State Electrochem 13, 1567–1575 (2009). https://doi.org/10.1007/s10008-008-0733-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-008-0733-x

Keywords

Navigation